第一次听说机器学习这个词,我以为是制作一个机器人让他来学习呢,在这请原谅我的无知,其实机器学习是人工智能的一个分支,已经成为当今最热门的趋势之一。据Gartner公司预测,到2020年,包括机器学习在内的人工智能(AI)技术几乎将在所有新的软件产品和服务中普及。那么什么是机器学习?它与人工智能有什么关系?技术专业人员应该知道哪些潜在的好处和挑战?

什么是机器学习?

有史以来,第一个使用“机器学习”这个词的人可能是亚瑟·塞缪尔(Arthur Samuel),他开发了第一批用于玩跳棋的计算机程序。1959年,他将机器学习定义为“计算机未被明确编程的学习能力”的技术。其他计算机科学家随后也提出了更多的机器学习数学定义,但塞缪尔的定义仍然是其中最准确和最容易理解的。

机器学习是人工智能的一个子集,是计算机科学的一部分,专注于创造具有人类思维方式的计算机。换句话说,所有机器学习系统都是人工智能系统系统,但并不是所有人工智能系统都具有机器学习能力。

机器学习可以划分为下面几个部分

监督学习

需要程序员提供输入样本以及输入样本的标签。例如,如果您想用监督学习教计算机识别猫的照片,你可以给它提供一大堆图像,有些被标记为“猫”,有些被标记为“不是猫”。机器学习算法将帮助系统学习概念的概括,这样就可以使计算机在新的图像中识别是否有猫。

无监督学习

要求系统根据给定的数据集得到分类的方法。例如,如果您有大量的在线销售数据,则可以使用无监督学习找到历年销售数据的相关性,来提高销售业绩。例如,你可能会发现,20世纪80年代初出生的女性,如果她们收入超过5万美元,就会很有可能喜爱某一品牌的巧克力棒;或者购买某种品牌的苏打水的人也会购买某种品牌的薯片。

半监督学习

正如你可能猜到的那样,是有监督学习和无监督学习的结合。回到猫的例子,想象你有大量的图片,其中一些图片被标记为“猫”和“不是猫”,还有一些没有标记。一个半监督的学习系统就可以使用标记的图像进行学习,然后猜测哪些未标记的图像包括猫。接着最好的猜测会被反馈到系统中来帮助它提高能力,然后这个循环会继续下去。

强化学习

类似于一个惩罚和奖励的系统。强化学习的一个经典例子是赌徒用老虎机赌博。起初,赌徒不知道哪个老虎机会有回报或者回报有多少,所以他把所有的老虎机都试了一遍。随着时间的推移,他发现一些老虎机的赔率更高。然后,赌徒就会在赔率高的老虎机投入更多的时间和本钱来赢更多的钱。

机器学习的好处

上面描述的许多用例可以由人或软件来处理,而不需要机器学习功能。然而,机器学习技术为这些替代方案提供了几个好处:

速度

人类可以创建模型,输入数据并自行运行预测分析所需的计算。然而,人类(或使用不具有人工智能功能的软件的人类)可能需要几天,几周甚至几个月才能完成。但是机器学习工具可以在几秒,几分钟或几小时内完成的任务。

准确性

速度使得机器学习系统能够利用大量的数据和更多的模型。因此,人工智能系统比某些任务的人员要好得多,比如预测分析。然而,在其他领域,如语音识别或图像识别,计算机系统仍然没有达到与人类相同的准确度。

效率和成本节省

机器学习软件并不便宜,事实上,在某些情况下,它可能非常昂贵。然而,使用软件来自动执行一项繁琐的工作比聘用几十或几百人完成同样的任务要经济得多。

制作机器学习的目的是为了更好的提高人们工作的效率,但是也不可完全的依赖于机器学习。

 



相关文章