机器学习对于很多技术控来说不会陌生,并且机器学习已经实用到工作当中,很多企业也有对外在招聘相关岗位的人才,对此感兴趣的技术控很多会到机器学习网站找相关的教程或视频课程来看,但是对于书籍方面不知该如何择选。

彷徨疑惑,机器学习该看什么书? 机器学习作为近期人工智能领域的热点话题一直被广大知乎讨论,小编也一直收到很多私信咨询有哪些好的书籍适合自己进行阅读学习。为大家带来十本经典机器学习相关书籍,分别适合入门、进阶到精深的三个不同阶段同学阅读,

Python高性能编程Python高性能编程

本书共有12章,围绕如何进行代码优化和加快实际应用的运行速度进行详细讲解。本书主要包含以下主题:计算机内部结构的背景知识、列表和元组、字典和集合、迭代器和生成器、矩阵和矢量计算、并发、集群和工作队列等。最后,通过一系列真实案例展现了在应用场景中需要注意的问题。

NLTK基础教程——用NLTK和Python库构建机器学习应用

NLTK 库是当前自然语言处理(NLP)领域最为流行、使用最为广泛的库之一, 同时Python语言也已逐渐成为主流的编程语言之一。本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习课程。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。

机器学习与数据科学(基于R的统计学习方法)

本书试图指导读者掌握如何完成涉及机器学习的数据科学项目。本书将为数据科学家提供一些在统计学习领域会用到的工具和技巧,涉及数据连接、数据处理、探索性数据分析、监督机器学习、非监督机器学习和模型评估。本书选用的是R统计环境,书中所有代码示例都是用R语言编写的,涉及众多流行的R包和数据集。

实用机器学习实用机器学习

本书适合需要应用机器学习算法解决实际问题的工程技术人员阅读,也可作为相关专业高年级本科生或研究生的入门教材或课外读物 大数据时代为机器学习的应用提供了广阔的空间,各行各业涉及数据分析的工作都需要使用机器学习算法。本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。在介绍每种机器学习算法模型时,书中不但阐述基本原理,而且讨论模型的评价与选择。为方便读者学习各种算法,本书介绍了R语言中相应的软件包并给出了示例程序。本书的最大特色就是贴近工程实践。首先,本书仅侧重介绍当前工业界最常用的机器学习算法,而不追求知识内容的覆盖面;其次,本书在介绍每类机器学习算法时,力求通俗易懂地阐述算法思想,而不追求理论的深度,让读者借助代码获得直观的体验。

Python机器学习实践指南Python机器学习实践指南-书适合Python 程序员、数据分析人员、对算法感兴趣的读者、机器学习领域的从业人员及科研人员阅读。 机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致。全书共有10 章。第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。通过阅读这本书,读者无需接触乏味的数学知识,就能很快为未来的发展打下坚实的基础。



相关文章